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For a "slowly" time-dependent Hamiltonian system exhibiting chaotic motion 
that ergodically covers the energy surface, the phase space volume enclosed 
inside this surface is an adiabatic invariant. In this paper we examine, both 
numerically and theoretically, how the error in this "ergodic adiabatic 
invariant" scales with the slowness of the time variation of the Hamiltonian. It is 
found that under certain circumstances, the error is diffusive and scales like 
T-l/z, where T is the characteristic time over which the Hamiltonian changes. 
On the other hand, for other cases (where motion in the Hamiltonian has a 
long-time 1/t tail in a certain correlation function), the error scales like 
iT - t i n (T ) ]  ~/2. Both of these scalings are verified by numerical experiments. In 
the situation where invariant tori exist amid chaos, the motion may not be fully 
ergodic on the entire energy surface. The ergodic adiabatic invariant may still be 
useful in this case and the circumstances under which this is so are investigated 
numerically (in particular, the islands have to be small enough). 

KEY WORDS: Ergodicity; time-dependent Hamiltonian; decay of correla- 
tions; adiabatic invariant; billiard; chaos. 

1. I N T R O D U C T I O N  

W e  c o n s i d e r  a c o n s e r v a t i v e  d y n a m i c a l  sys tem c h a r a c t e r i z e d  by a t ime-  

d e p e n d e n t  H a m i l t o n i a n  H(p ,  q; et), whe re  p a n d  q are  N-vec to r s ,  and  the  

expl ic i t  t ime  d e p e n d e n c e  of  H is " s low."  T o  e m p h a s i z e  this s lowness ,  we 

h a v e  wr i t t en  the  th i rd  a r g u m e n t  of  H as et, whe re  we shal l  f o r m a l l y  t a k e  e 

small .  A l t e rna t ive ly ,  we can  set T =  e - 1  a n d  t h ink  of  T as the  t ime  scale 

o v e r  wh ich  H ( p , q ; e t )  goes  t h r o u g h  an  o r d e r - o n e  change ,  T - 1 ~  
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H i ~?H/Ot. The statement that this time dependence is slow (or adiabatic) 
is equivalent to saying that T is much longer than any relevant charac- 
teristic time for the particle motion in the "frozen" Hamiltonian 4 
H(p, q; ~t0), where to is a constant. 

For the case where motion in the frozen Hamiltonian is periodic, 

[p(t), q(t)]  = [p(t + ~p), q(t + ~p)] 

this situation leads to the well-known adiabatic invariant # = ~ p. dq, where 
denotes integration over one period %. The adiabatic invariant for 

periodic motion was discussed by Boltzmann and subsequently by 
Helmholtz, Hertz, and Rayleigh, among others (cf. Jammer (1) for dis- 
cussion and primary references). By the assertion that /~ is an adiabatic 
invariant we mean that a particle orbit approximately conserves/~ over a 
time interval large enough that H experiences an order-one change 
provided that this change occurs slowly (in the sense already mentioned). 
For the case of one degree of freedom ( N =  1) and periodic motion, the 
conservation of # has been shown to be very good (2 4) in that one can 
define a quantity close to # for which the error in the adiabatic 
approximation is less than O(e m) if H is m-times differentiable with respect 
to t. [In fact, in solvable examples (s) it is common for the error to be of the 
form e x p ( -  K/e).] The utility of the adiabatic invariant for periodic motion 
has long been recognized. For  example, in plasma physics it forms the basis 
of the fundamental concept of mirror confinement of charged particles (6) 
and has also been extensively used in performing stability calculations. (v)'5 
In addition, in the early theory of quantum mechanics, Ehrenfest (9) argued 
that ~ p.  dq was a proper quantity to quantize because it is an adiabatic 
invariant [e.g., for a harmonic oscillator with frequency co and energy E, 
E / c o = ( n + l / 2 ) h ,  quantum mechanically, while E/co is an adiabatic 
invariant of the classical mechanics for slow variation of the oscillation fre- 
quency co -- co(~t)]. 

Here we shall consider another type of adiabatic invariant. We 
presume that the number of degrees of freedom is greater than 1, N >  1, 
and that motion in the frozen Hamiltonian is chaotic and ergodic on the 
constant-energy surface, H(p(t), q(t); ~to) = const, for all to in some range, 
tl>~ to~>0. Consequently the motion in the frozen Hamiltonian has no 
additional isolating constants of the motion other than the frozen 
Hamiltonian itself. In this case, as shown subsequently, the volume 
enclosed within the surface of constant H is an adiabatic invariant. 6 (This 

4 By the term "frozen Hamiltonian" we mean the time-independent Hamiltonian H(p, q) given 
by/f  = H(p, q; eto), where t o is a constant. 

5 For a recent example see Antonsen and Lee. ca) 
6 For N = 1, this reduces to the adiabatic invariant ~ p dq. 
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presupposes, of  course, that  this volume is finite.) This case of  an adiabatic 
invariant for N~> 1 (statistical mechanics)  was stated by Boltzmann.  7 The 
volume inside the cons t an t -H  surface is 

#(E, t) = ff U[E--  H(p, q; et)] dXp dNq (1) 

where UE---]  denotes the unit step function and E is the energy. Thus, for 
example, given an initial condi t ion and the corresponding energy E = E0 at 
t = 0 ,  calculation of  #(E,t)  from Eq . (1 )  allows us to obtain an 
approximat ion  to the energy E(t) at all subsequent times via #(E, t ) =  
#(Eo, 0). We call #(E, t) for N >  1 the ergodic adiabatic invariant. ~11) To see 
how the approximate  invariance of the quant i ty  given by Eq. (1) follows 
from Hamil ton ' s  equations,  we note that  if any closed surface is specified at 
t = 0 and each point  on that  surface is evolved, then the new surface must  
enclose the same phase space volume as the initial surface. ~12) If a particle 
wanders ergodically over the H(p, q; eto) = E surface in a time short  com- 
pared to T, then, as t increases, an ensemble of  particles on the initial 
H = c o n s t  surface will all have qualitatively similar trajectories. In par- 
ticular, their subsequent energies will be approximate ly  equal. Thus, an 
initial H = c o n s t  surface evolves into another  surface, which is close to 
being an H = e o n s t  surface (cf. Fig. 1). Hence Eq . (1 )  is an adiabatic 
invariant. 

7 For example, a statement within the context of statistical mechanics appears in Ref. 10. 

P P 

(o) (b) 
Fig. 1. (a) An initial H=  E surface at t = 0 evolves under the exact dynamics to (b) a con- 
voluted surface that is close to the surface H=E(tl), where E(tx) is obtained from the 
constancy of #. The phase space volume inside the initial surface at t = 0 and inside the 
squiggly surface at t = t~ are exactly equal. 
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With the advent of computer solutions for particle motion, it has 
become more and more appreciated that low-degree-of-freedom 
Hamiltonian systems can often behave chaotically in such a way that par- 
ticle motion samples the surface of constant H, if not fully, at least nearly 
fully. Thus, the ergodic adiabatic invariant is of interest not only for the 
N ~ ~ limit of statistical mechanics, but also for low N. This seems to 
have first been appreciated by Lovelace ~3) (who used the N = 2  ergodic 
adiabatic invariant to analyze the compression of a plasma ring confined 
by large-orbit gyrating ions) and Wongetal. (14) (who used it in for- 
mulating a proposed magnetic plasma confinement concept). 

At this point it may be instructive to discuss an example of the ergodic 
adiabatic invariant. Consider the situation shown in Fig. 2, where a point 
particle P moves in a two-dimensional square container with impenetrable 
walls of dimension L in the center of which is situated an impenetrable 
circular barrier of radius r. (The latter may also be thought of as a second 
large and very massive particle.) The dynamics is specified by the constancy 
of the particle velocity between encounters with the boundaries and by the 
law of specular reflection in the local frame moving with the boundary at 
the point of collision. For the case where the geometry (i.e, L and r) is held 
fixed in time, the motion of P in this "billiard" is known (15) to be chaotic 
and ergodic on the energy surface. The ergodic adiabatic invariant for a 
billiard ( N =  2) is /~= 2~mEA (Section 2), where E=mv2/2 and A is the 
accessible area (A = L  2 -  7~r 2 for this example). Thus, for this example, if 

L_ 

y ~ 

P 

L_ 

Fig. 2. Square billiard (Example 2). 
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one of the dimensions, L or r, is varied slowly with time, then the variation 
of E would be determined by the approximate constancy of #, 

E(t) ~- E(O) A(O)/A(t) (2) 

This result also has an intimate connection to the adiabatic gas law 
/~V~=const, where V is the volume, 7 = ( N - + 2 ) / ~ ,  ~ is the number of 
degrees of freedom of each gas particle,/5 is the pressure,/~ = nkT (with 
the temperature and n the particle density), and NkT/2 is the average 
energy of a gas particle. Now consider the situation in Fig. 2, and treat it as 
if it was a gas. Since there the situation is two dimensional, V= A. Since 
there is only one particle, .N=2,  7 = 2 ,  n =  l/A, and kT=E.  Thus, 
~Vr= EA, so that constancy of/~V 7 implies constancy of EA and therefore 
#. Hence, the single chaotic particle behaves like a gas. [-For the three- 
dimensional case where Fig. 2 illustrates a sphere inside a cube, N =  3, 
n= 1/V, 3kT=E, and 7 = 5/3 (as for an ideal monatomic gas). We obtain 
p V  ~= 2EV 2/3, and for a chaotic particle in a three-dimensional container, 
#=4~(2mE) 3/2 V~(EV2/3) 3/2. Thus, constancy of /3V r again implies 
constancy of# . ]  See Appendix A for a discussion of the ergodic 
adiabatic invariant in relation to entropy and also for its implications for 
"quantum chaos." 

The central question to be addressed in this paper is, How good is the 
ergodic adiabatic invariant? More specifically, what is the error incurred in 
the statement # = c o n s t ?  As we have already mentioned, in the case of 
N =  1 and periodic motion a quantity close to # can be defined for which 
the error is smaller than any power of e for sufficiently smooth time 
variation of H. The case of the ergodic invariant with N >/2 has been con- 
sidered theoretically by Ott, m/ using a multiple time scale expansion. His 
main result is an estimate of the typical rms error incurred by the 
approximation. (A precise statement of what is meant by the rms error is 
given in Section 3. For  now we may think of it as a measure of the typical 
deviation of the squiggly surface in Fig. lb from the smooth, constant-H 
surface predicted by the ergodic adiabatic invariant.) The error estimate 
results in Ref. 11 depend on two hypotheses: 

(a) The particle orbit in the frozen Hamiltonian is ergodic on the 
energy surface. 

(b) A certain time correlation function C(s) (to be defined later) for 
motion in the frozen Hamiltonian is integrable, ~ C(s) ds < o0, 
where s denotes the time difference between the correlated quan- 
tities. 

Thus, from (a), the derivation does not apply if motion in the frozen 
Hamiltonian has invariant tori (islands), while from (b), it does not apply 
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if, for example, the relevant correlation function has a long-time tail 
C(s) ~ s ~ for s --, oe with ~ ~< 1. 

The setting of Ref. 11 is that of Hamiltonians with smooth dependence 
on p and q. However, we shall show that similar results apply for the case 
of chaotic billiard problems (Section 3). Combining the theoretical results 
of Ref. 11 with those to be derived in Section 3, we have the following: 

1. If hypotheses (a) and (b) are satisfied, then the typical rms error in 
the ergodic adiabatic invarianl is of order e ~/2, and this applies 
both for smooth (p, q) variation (Ref. 11) and for billiards (Sec- 
tion 3). 

2. If hypothesis (a) is satisfied, but (b) is violated with C(s).-~ 1/s for 
large s, then the typical rms error is of order [e ln(e-~)] '/2. 

3. If hypothesis (a) is satisfied, but (b) is violated with C ( s ) ~  (l/s) r 
(0 < ~ < 1 ) for large s, then the typical rms error is of order e :/2. 

Note, for example, that C ( s ) ~  1Is for the chaotic billiard example in Fig. 2. 
(This corresponds to case 2 above.) The existence of this type of long-time 
tail for a correlation function in the situation of Fig. 2 has been shown by 
Zacher le ta l .  (161 A modification of the billiard in Fig. 2 for which 
hypothesis (b) is satisfied (17) (case 1) is shown in Fig. 3. s Contrasting the 
theoretical results mentioned above {namely error scalings like e ~/2, 

8 We do not know of an example where case 3 applies. 

./',~. 

..... # 0  ................ R 

. .s '''-.......... 

1 
D 

Fig. 3. Billiard with convex walls (Example 1). 
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[eln(e 1)]1/2, and e ~/2 with 0 < 3 < 1 }  with the results for the case of 
periodic motion in N =  1 (where the error can be smaller than e" for all 
finite m), we see that the adiabatic invariant approximation is in general 
not as good for the case of chaotic motion (N~>2) as for the case of 
periodic motion with N =  1. 

The outline of the rest of this paper is as follows. Section 2 presents the 
results of computer experiments evaluating the rms error for three different 
slowly changing chaotic systems: 

Examp/o I. The billiard in Fig. 3. 

s 2. The billiard in Fig. 2. 

s 3. The two-dimensional Hamiltonian given by 

H(p, q; t) (2m) -~ 2 ),2 x2y2 = (Px+P~)+ gx2+ + (3) 

where g = g(et) is a slow function of time to be specified later. 

The results for the numerical experiments for Examples 1 and 2 are 
found to be in good agreement with theory. For Example 3, however, 
islands are present, and consequently there is no theory estimating the 
error in that case. Our numerical results for Example 3 show that the con- 
servation of/~ can still be a useful approximation if certain conditions are 
satisfied (in particular, the islands in the frozen Hamiltonian should not be 
too large). In Section 3 we review past theoretical work, consider the case 
C(s) ~ s  -~ (3 <~ 1), and derive the previously mentioned theoretical results 
for the billiard case. Section 4 summarizes conclusions. 

2. N U M E R I C A L  R E S U L T S  

In an effort to determine how well the ergodic adiabatic invariant/~ is 
preserved, we have performed numerical experiments on the three 
dynamical systems (Examples l-3) described in Section 1. The adiabatic 
invariant /~ displays different distinct types of behavior for each of these 
systems. We believe that the behaviors displayed for these three examples 
are typical of what is to be expected for systems with the given charac- 
teristics. In particular, for Example 1, hypotheses (a) and (b) are satisfied; 
for Example 2, hypothesis (a) is satisfied, but (b) is not with C(s)~ l/s; 
and for Example 3, (a) is violated, but there is a connected "sea of chaos," 
which covers most of the energy surface (the islands are small). In this 
section we describe the experimental methods used to obtain and analyze 
our data and present the results of our numerical experiments. 
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2.1. Example  1 

The billiard we call Example 1 represents a best case scenario in the 
sense that neither hypothesis (a) nor hypothesis (b) is violated. For all 
billiards, we have that 

i ~ = 2 ~ r n E A  (4) 

where E is the energy of the system and A is the area of the confining 
region. [-This follows since the configuration space area available to a 
particle of energy less than E--  p Z / 2 m  is clearly just A (independent of E), 
while the available momentum space area is ~p2 = 2rcmE.]  The area of the 
confining region for Example 1 is 

A = L 2 - rcr 2 - 2 R 2 ( 0  - sin 0) (5) 

where r, L, R, and 0 are shown in Fig. 3. 
The theoretical results in both Ref. 11 and Section 3 are statistical in 

nature. They predict the behavior of the variance of # about its mean value. 
In order to test these predictions, our numerical experiments used an 
ensemble of M~> 1 different initial conditions (p(0), q(0)), uniformly dis- 
tributed over an H(p, q; 0 ) =  const phase space hypersurface. For billiards 
H =  p .  p / 2 m  + V(q; t), where the potential V acts only at the walls of the 
box. Thus, inside the confining region, H is only a function of the 
magnitude of p. Therefore, the q(0)'s were selected at random inside the 
confining region, while the p(0)'s were given unit magnitude and random 
orientation. For convenience the mass of the particle was fixed at m = 1. 

For all billiards, a "slow" time dependence can be added to the system 
by slowly changing the size and shape of the confining region. Let w be the 
velocity of the moving wall of the confining region at the point where the 
particle strikes the wall (w is taken to be normal to the wall). If w ' p  > 0, 
the particle will lose energy as it is specularly reflected. Conversely, if 
w- p < 0, the particle will gain energy. However, # will remain adiabatically 
invariant. In Example 1 we oscillate the large circles according to the rule 
D = D o - A D  c o s ( 2 r c t / T ) ,  where D is the distance shown in Fig. 3. The 
radius r of the central circle as well as the radius of curvature R of the con- 
vex walls are held fixed in time. Thus, change of D is accomplished by 
moving the centers of curvature of the convex walls in and out (refer to 
Fig. 3). The "slowness" of the time dependence is controlled by the 
parameter T. The T values we used in our numerical experiments ranged 
from a minimum of 100 to a maximum of 10,000. By oscillating D, the 
quantities L and 0 shown in Fig. 3 will be time-dependent. Explicit 
expressions for L and 0 as a function of D are L = R + D - -  

( R  2 - -  D 2 - 2 R D )  1/2 and 0 = 2 s i n - ~ ( L / 2 R ) .  
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There are geometrical constraints on the possible values that we can 
assign to Do, AD, R, and r. An examination of Fig. 3 indicates the nature of 
these constraints. In particular, we do not want the large circles to intersect 
the small circle during the oscillation. Similarly, we do not want the large 
circles to become disjoint from each other during the oscillation. The latter 
constraint ensures that the particle is permanently trapped. For the model 

in Fig. 3 these constraints are ( x ~ - 1 ) R > > - D > r .  For  our numerical 
experiments we used the following parameter values: r =  1, D o = 2 ,  
AD = 0.5, and R = 6.297 .... 

Our numerical experiments for Example 1 proceed as follows. We 
evolve each of the M randomly chosen initial conditions with time. 
Between reflections the particles move with constant velocity v. At 
reflections from a moving wall we change the particle's velocity from v , 
before hitting the wall to v+ after hitting the wall, via 

v+ = v _  + 2 [ w - ( f i - v  )fi] 

where fi is the unit normal to the wall (taken outward from the accessible 
area) at the impact point, and w is the local normal wall velocity. This 
reflection law is obtained by noting that, in the frame moving with the 
local wall velocity, the reflection is as for a stationary planar wall (i.e., in 
this frame the angle of incidence equals the angle of reflection and energy is 
conserved). At any given time, each particle has an energy Ei(t), where i 
labels the particle (i = 1, 2 ..... M). We then calculate the quantity 

~i(t) = E, (0  A ( 0  

for each particle. Averages 

,s 
6 ( t ) - ~  (#~(t) -- #o) = f i -  #o 

i = l  

1 ~ [/z,(t)_fi] 2 ~ 
are then calculated, where #o is the initial value of all the #;(t) [#;(0) =- #o] 
and / i  is their mean value. 

We calculate 6 and cr 2 at t = T/2 as well as at t = T for a range of T 
values and investigate their dependence on the slowness T. We also 
examined the behavior of r 2 as the system proceeds through many 
oscillations of the fundamental period T. 

The results of our numerical experiments on Example 1 are shown in 
Fig. 4. In all of the figures the straight lines are least square error lines of 
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Fig. 4. (a) Results of numerical experiments on a billiard with convex walls (Example 1). 
The results shown are for Te  [100, 10000] and an ensemble average of 50,000 particles. Data 
taken at ( x ) t = T and ( 0 )  t = T/2. Notice that the error in the adiabatic invariant scales like 
e~/2. (b)The same as (a), except for T~> 1000. (c)The drift of the adiabatic invariant at time 
t = T away from its initial value. Notice the linear dependence of c~ on e. Comparison with (a) 
indicates that ~/d ~ ~,~,~ 1 in the T-~ oo limit. (d)Same as (c), except for t = T/2. (e)The 
ratio of o2(nT) /a~(T)  versus n. The linear relationship indicates the diffusive nature of a2(l). 
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best fit for the data (for Fig. 4a only the T~> 1000 data are used for the fit). 
The data indicated by crosses and circles in Fig. 4 correspond to 0 -2 and 6 
evaluated at t = T and t = T/2, respectively. In Figs. 4a and 4b the abscissa 
is the slowness parameter  ~ - 1/T and the ordinate is ~2 __ 0-2/(#o)2 , the nor- 
malized variance of # about  its mean. In these figures we used an ensemble 
of M = 50,000 particles. As one can see from Figs. 4a and 4b, the expected 
linear relationship between 0 -2 and ~ is found throughout almost the entire 
range of e. In Fig. 4b we plot some of the same data as in Fig. 4a but only 
for T>~ 1000. A close examination of the data for M = 50,000 reveals that it 
exhibits an extremely small amount  of scatter about  the line of best fit. (On 
the scales shown in Figs. 4a and 4b the scatter is too small to be seen.) We 
have measured g, the standard deviation of this scatter, for ensembles of 
size M1 = 100 and M2 = 5000. In both cases it was found that the ratio of 
the standard deviations from the line of best fit scaled like g(M)/g(Mi) ~- 
(Mi/m) t/2 for i = 1 , 2 ,  in agreement with the scaling predicted by 
probability theory. Therefore, we believe this scatter is statistical in nature. 

Figures 4c and 4d show plots of 5- -  5/#o versus 1/T ( M =  50,000). In 
agreement with the theoretical results of Section 3, we see that the data are 
well fit by a linear dependence of 5 on 1/T, 6 ~ 1/T. Since 52 ~ l/T, we see 
that 5/6 ~ 1 / , , / T ~  1. Thus, the error incurred in predictions based on the 
constancy of the ergodic adiabatic invariant /t is primarily due to ~2, the 
variance about  the mean value of #, rather than 8, the drift of the mean 
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value away from the initial value/~o. We found similar results for Exam- 
ples 2 and 3. Therefore, for Examples 2 and 3 we will only show plots 
indicating the behavior of 62 rather than 5, since ~ > 6 in the adiabatic 
limit. 

Having established that the principal source of error in the adiabatic 
invariant is given by 62, we return to Fig. 4a. From this figure we see that 
the relative error 6 in the adiabatic invariant (measured at t = T) is less 
than 10% for T>300  and less than 1% for T>30,000. We are also 
interested in the relative error in the energy predicted by the adiabatic 
invariant. Thus, we define a relative energy error ~/e by 

r/E ~- ( ( d H )  2 )'/2/IR (T/2) - E(0)I (6) 

where E ( 0 ) - i / 2  and E(t) is the particle energy predicted by the conser- 
vation of the adiabatic invariant [Eq. (1)], and 

1 M 
((AH) 2)~--m 2 [ Ei- F~(t)]2 

i ~ l  

is evaluated at t = T/2. [Note that ((AH) 2) ~-G2/(O~t/~E)2.] The numerical 
values of the relative energy error r/e corresponding to the T ranges above 
arc less than 3 % for T >  300 and 0.3 % for T >  30,000. 

In Fig. 4e we plot the ratio a2(nT)/a2(T) versus n, the number of 
oscillations ( M =  5000). The linear relationship shown in Fig. 4e indicates 
that the evolution of a 2 over multiple oscillation times is diffusive (i.e., the 
variance after n oscillations of period T is approximately the product of the 
variance for a single oscillation of period T and n, the number of times the 
system oscillates). 

2.2. Example 2 

We now turn out attention to Example 2. This system is also a 
billiard, and is shown in Fig. 2. Example 2 illustrates one possible con- 
figuration where hypothesis (a) is satisfied, but hypothesis (b) is violated. 
Specifically, C(s)~ 1Is for large s. Since this system is also a billiard, the 
ergodic adiabatic invariant is given by Eq. (4), with A = L 2 -  7rr 2. 

The existence of a long-time 1Is tail in the correlation function for 
the (time-independent) billiard in Fig. 2 has been demonstrated by 
Zacherl etalJ 16) This long-time tail arises due to particles that bounce 
between parallel walls for many bounces, as illustrated in Fig. 5. A particle 
that makes i bounces or more with the parallel walls before colliding with 
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m 

[_ 

t_ 

Fig. 5. For small ~b the particle bounces many times before colliding with the circle. Such 
trajectories can mimic a periodic orbit (exactly vertical or exactly horizontal) for very long 
times. 

the central circular boundary is traveling nearly vertically (or horizontally), 
and its velocity makes an angle ~b to the vertical that must be small enough, 

(~ < o (1 / i )  

At any given time let f denote the fraction of particles that subsequently 
make at least i such bounces. Then, due to the ergodicity (15) of the particle 
motion in the billiard, 

f~ 1/i 

This relatively large number of particles behaving in a coherent, close to 
periodic manner for i or more bounces is what leads to the long-time 1Is 
tail. Put another way, the periodic orbit represented by a particle moving 
exactly in the vertical (or equivalently horizontal) direction (and not 
hitting the circle) has neutral stability. The family of such periodic orbits 
has zero measure in phase space, but, as a result of its neutral stability, a 
relatively large measure of the particles mimic it for a finite time (i.e., 
f ~  1/i). In contrast, for the billiard of Fig. 3 all periodic orbits are 
exponentially unstable. Thus, the fraction of particles that mimic a periodic 
orbit for the Fig. 3 billiard for Z or more bounces is exponentially small in i, 
and a long-time tail is absent. We emphasize that the above arguments are 
only meant as a guide to intuition and refer the interested reader to 
Refs. 16 and 17, where the cases of the billiards of Figs. 2 and 3 are treated 
more rigorously. 
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Fig. 6. (a) Results of numerical experiments on the square billiard (Example 2). The results 
shown are for Te [100, 10000] and an ensemble average of 5000 particles. Data taken at ( x ) 
t = T and (O)  t = T/2. Notice that the error in the adiabatic invariant scales like [e In(e- i)]  1/2 
in the T ~  oo limit. (b) Same as (a), except for T~> 1000. (c) Ratio of a2(nT)/a2(T) versus n. 
The linear relationship indicates that this billiard is also diffusive. 
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Fig.  6 (continued) 

The ensemble of M = 5000 initial conditions we employ in Example 2 
is chosen in the same manner as those in Example 1. Similarly, we add an 
explicit time dependence to the system by oscillating L, the length of the 
walls of the confining region, via the rule L/2 = L o - A L  cos(2~t/T); r is 
kept fixed in time, In our numerical experiments T ranged from a minimum 
of 100 to a maximum of 10,000. The only geometrical constraint on this 
billiard is Lo--AL>r.  We chose parameter values of L 0 = 2 ,  AL=0.5 ,  
r = 1, m = 1, and initial speed one. 

The results of our numerical experiments on Example 2 are shown in 
Fig. 6. In Figs. 6a and 6b the abscissa is e l n ( ~ - l ) ~ ( l n  T)/T and the 
ordinate is 52 -~ ~z/(/%)2, the normalized variance of/~ about its mean. In 
Figs. 6a and 6b the crosses denote data taken at t---T and the circles 
denote data taken at t = T/2. The straight lines are least square error lines 
of best fit using the data in the asymptotic region (T~> 1000). We expect 
(cf. Section 3) that ~2 will depend linearly on (ln T)/T. Figure 6a shows 
that for the range of T values used, if2 asymptotes to a linear dependence 
on (ln T)/T for large T. This behavior is further confirmed in Fig. 6b, which 
plots the same two variables, but only for T~> 1000. Within this range of T 
values the dependence of 52 is extremely well fit by its predicted linear 
dependence on (ln T)/T. From Figs. 6a and 6b we see that the relative error 
5 in the adiabatic invariant (measured at t = T) is less than 10% for 
T > 4 0 0  and less than 1% for T>75,000.  The relative energy error r/E 
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[Eq. (6)] corresponding to the T ranges above are 4% for T>400 and 
0.4% for T>  75,000. 

Note that, in comparison with Example 1, much larger T values are 
required before d 2 is accurately fit by its asymptotically predicted behavior. 
That is, for Figs. 4a and 4b the straight line fit is good for T>~ 200, while 
for Figs. 6a and 6b, T~> 1000 is required. This is not unexpected, since, due 
to the predicted forms of the error in the two cases, we might guess that the 
conditions for the asymptotic regimes to apply are T>> 1 for Example 1 and 
In T~> 1 for Example 2. 

In Fig. 6c we plot the ratio a2(nT)/~2(T) versus n, where T-- 1000 and 
n is the number of oscillation times of the system. The behavior of the 
present example is qualitatively the same as that of Example 1. Hence, for 
this billiard the evolution of o -2 over multiple oscillations of the system 
geometry is also diffusive. 

2.3. Example  3 

For our last example we examine a dynamical system where 
hypothesis (a) is violated. We consider the following Hamiltonian: 

g ( p ,  -1 2 (7) q; et) = (2m) (Px + P~) + g(t) x2 + y2 + x2y2 

where g(t)= [7-cos(2rct/T)]/6. Unlike billiards, the phase space trajec- 
tories are continuous. The equations of motions for particle trajectories are 
given by Hamilton's equations. 

In Appendix B we perform the integral given by Eq. (1) for the 
Hamiltonian given by Eq. (7). The result of this calculation is 

16zrm(g + E) 1/2 
#(E, t )=  9 [(3E+2g)F(k)-(4E+2g)K(k)]  (8) 

where k2~ E/(g + E), E is the energy of the system, and F(k) and K(k) are 
complete elliptic integrals of the first and second kind, respectively. 

In our numerical experiments we considered m = 1 and an initial 
energy of E=24.  Figure 7 shows surface-of-section plots for the time- 
independent Hamiltonian system obtained by freezing t in Eq. (7) at t = 0, 
T/8, T/4, 37"/8, and T/2 and using the corresponding energies obtained 
from the prediction of the adiabatic invariant, 

#(E(t), t)=/.t(24, 0) 

at t =  0, T/8, T/4, 3T/8, and T/2. The surface of section is obtained by 
plotting y(t) and py(t) every time an orbit crosses the plane x - -0  with 
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- '  2 Px > 0. For x = 0, H =  (2m) "(p~ + p~) + y2, and thus all points in the sur- 
face of section fall within the area defined by E >>, y2 + pZ/2m. In each of the 
surface-of-section plots several choices of initial conditions are superposed. 
In all cases, however, most of the area shown is filled by a single chaotic 
orbit generated from one initial condition. Other initial conditions that 
trace out smooth closed curves (tori) are also evident. These, however, are 
seen to enclose only a small fraction of the available y-py area. Thus, 
although hypothesis (a) is violated, typical particles still sample most of the 
energy surface. Hence, we might expect the adiabatic invariant to still 
provide a useful approximation, and this is what we wish to test. Our hope 
is that these numerical results will be typical of what happens in other 
situations where tori are present but only occupy a small fraction of the 
energy surface. 

A word is in order about our choice of potential in Eq. (7), namely, 
V= g(t)x2+ y2+ x2y2. We wanted to have a Hamiltonian where the area 
occupied by islands was not large and could be decreased by increasing the 
energy. Thus, a reasonable place to start is with a potential that has no 
islands at all (i.e., a completely chaotic case). Such a case is the potential (18) 
V =  xZy 2. Note, however, that this potential is unsuitable for testing the 
adiabatic invariant, since the integral for # [Eq. (1)] is infinite. Thus, we 
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have added the confining quadratic terms g(t)x2+y 2, which prevent 
particles from running off to large x along y _~ 0 and large y along x -  0 
and hence restores a finite value to p. Our choice of the time dependence 
as occurring only multiplying the x 2 term was somewhat arbitrary, but 
satisfied our desire to make the time dependence asymmetric in x and y; 
e.g., we wanted to avoid the choice g(t)(X 2 + y2) q_ x2y2. 

For the numerical experiments we used M =  12,800 particles and, at 
t = 0, randomly distributed them uniformly over the H = 24 energy surface. 
The initial distribution we wish to simulate can be written as F(p, q; 0) = 
Kb[E-  H(p, q; 0)], where K is a constant such that ~ d2p d2q F(p, q; 0) = 1. 
The corresponding configuration space density is p(q)=~F(p ,  q; 0)d2p. 
Since H=p.p/2m+ V(q), we have p(q)=2nKmU[E-V(q)]; i.e., the 
distribution in position space is uniform in the allowed region. Thus, to 
generate a suitable initial ensemble numerically we first choose an ensemble 
of position coordinates uniform in E>~ V(q). This is accomplished by ran- 
domly choosing x, y coordinates uniform in Ix[ ~<x/-E and [Yl ~x/ -~  
[recall that g(0)=  1]. We calculate V(q) for each such point. If V(q)> E, 
the point is rejected. If V(q)4E,  the point is kept. We then specify the 
momentum to have magnitude IPl = { 2 m [ E -  V(q)] } 1/2, randomly choose 
0 ~ (0, 27c], and then set Px = IPl cos 0, py = IPt sin 0. Applying this recipe 
for point selection, we generate an ensemble of initial points that simulates 
a uniform distribution over the H =  24 energy surface. 

The results of our numerical experiments on Example 3 are shown in 
Fig. 8. Figure 8a is a log-log plot of if2 _ a2/(#o)2 versus e - 1/T. For large 
values of T the data asymptotes to a straight line. This linear relationship 
indicates that in the adiabatic limit, t~ 2,-~ (l /T) r where ~ is the slope of the 
line in Fig. 8a. In Fig. 8b we plot the same variables, but only for T~> 1000. 
Once again the crosses and circles represent data taken at t =  T and 
t = "1"/2, respectively, while the straight lines are least square error lines of 
best fit using only the data for T~> 3000. 

From Fig. 8b, we see that the data at t = T are rather well fit by the 
fitted straight line, which has a slope of ~-~ 0.41. The data for t - -T/2,  
however, have a good deal more scatter and the fitted slope is correspon- 
dingly not as reliable, (-~ 0.24. While the two values of ~ at T and T/2 
differ and the results have a good deal of scatter, the general trend for the 
error d 2 to decrease with increasing T is apparent. We caution, however, 
that no theory is available for this case, and consequently care must be 
taken in interpreting these results. In particular, although the fit to a power 
law is fairly good for the t = T data in Fig. 8b, we cannot be certain that a 
similarly good fit would persist as T is made larger (computer time 
limitations prevent us from extending our data in this direction). From 
Figs. 8a and 8b we see that when we extrapolate T to the range T >  40,000 
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the relative error 6 in the adiabatic invariant is less than 1%. We also find 
that the relative energy error qe [Eq. (6)] is less than 12% for T >  40,000. 
Comparing the results of Example 3 with those of Examples 1 and 2, we see 
that the scaling of the error in the adiabatic invariant is worse for Exam- 
ple 3, as expected. 

In Fig. 8c we plot a2(nT)/a2(T) versus n, the number of oscillations 
( T =  6000). The linear relationship between these two quantities is again 
indicative of the diffusive nature of a2. 

3. THEORETICAL CONSIDERATIONS 

In this section we provide a theoretical basis for the numerical results 
we reported in Section 2. We begin by discussing Hamiltonians that depend 
smoothly on p, q, and t, that is, H is assumed to be differentiable in these 
variables. After this type of system has been analyzed, we will consider 
billiards. Let E(t) denote the value of the energy at time t predicted by the 
conservation of # [i.e., t*(E(t), t) = t*(E(0), 0)]. Consider a particle in the 
ensemble initially on the energy surface H(p, q; 0 ) =  E(0). At some latter 
time this particle will have an energy slightly different from the predicted 
value. That is, for this particle HCE(t) .  If we expand t* in a Taylor series 
about E, we have 

At* = ~t*(E) 3 H  + 1 ~2ff(E) (AH) 2 + 0((3H)3) (9) 
~E 2 UL- 
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where A# - #(H) -- #(E) and AH = H -  E. Furthermore, 

(~#(E)~ 2 .AH. 2 ~#(E)/a2#(E)\ (Ag)2=\  OE } ~ ) + ~ ~ ) ( f l H ) 3 + O ( ( A H )  4) (101 

If we then take the ensemble average of A# and (A#) 2, we have 

1 52#(E) 
(zig} c~#(E) (AH}-~ - -  ((AH) 2} (11) 

~- OE 2 t~E 2 

((A#)2}-~\  OE ] ((AH)2} (12) 

As we shall show, (AH} and ((AH) 2} are of the same order, while the 
contributions from the terms (O((AH) 3) ) are of higher order in T-1; thus, 
these terms have been omitted in Eqs. (11) and (12). We now calculate 
((AH) 2} and (AH}, from which ((A#) 2} and (A#} are determined by 
Eqs. (11) and (12). 

3.1. Analysis for Smooth  Hami l tonian Systems 

Consider an ensemble of initial conditions uniform on an energy 
hypersurface H(p, q;0)=E(0),  where p and q are N-vectors. The dis- 
tribution function for such an ensemble can be written as 

F(p, q; 0) = K(0) 6[-H(p, q; 0 ) -  E(0)] (13) 

where F is normalized so that ~ FdUp dNq = 1 [this determines K(0)]. The 
time evolution of this initial distribution function is governed by the 
Liouville equation, 

~3F 0H OF aH 0F 
) = 0  (14) 

~t ~p Oq c3q c~p 

As our ensemble of initial conditions evolves in time, a given realization in 
the ensemble will in general gain or lose slightly more or less energy than 
that predicted by the adiabatic invariant. We then ask, what is the time 
dependence of the first and second moments of the deviation of the energy 
from the energy value obtained from #=const? The second moment 
((AH) 2} represents the spread of the energies in the ensemble about the 
value E(t), while the first moment (AH} represents the drift of the mean 
energy of the ensemble away from E(t). We first show how to obtain the 
time evolution of the second moment. (We shall return to the first moment 
subsequently.) An equation that gives the time dependence of the second 
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moment 
integrating over phase space. After an integration by parts, we have 

OH dE'~ N d ( (Ag)2)= 2 f F ( H -  -~ -~)  d p dNq 

where 

can be derived by multiplying Eq.(14) by ( H - E )  z and 

(15) 

((AH) 2 ) - f (H-- E) 2 FdNp dNq 

The problem then becomes that of obtaining a sufficiently good 
approximation to F to insert into Eq. (15) so as to obtain a nontrivial 
approximation to d((AH) 2)/dt. To do this, O W n ) h a s  applied a two-time- 
scale asymptotic technique to solve the Liouville equation (14) subject to 
the initial condition (13). He assumed that F could be written as a part Fo 
that changed on the slow time scale defined in Section 1 plus a small 
correction term that depended on both the fast and slow time scales, as 
well as higher order terms. Thus, 

H(p, q; t) = h(p, q; ~2) 

F(p, q; t ) =  Fo(p, q; ~2) + aF~(p, q; r l ,  % ) +  O(e2) 

Z" 1 = / ,  T 2 = et, e ~ 1 

(16) 

(17) 

(18) 

where e is defined in Section 1. The fast and slow time variables r I and r2 
are treated as independent variables. As such, the time derivative in 
Eq. (14) becomes Ofi?t = 0/&I + e ~/&2 + O(e2) �9 By using this and inserting 
Eqs. (16)-(18) into Eq. (14), we obtain 

Oh OFo Oh OFo 0 (19) 
Op Oq Oq Op 

dF1 _ O F  1 Oh OF1 Oh. OF 1 OF o 
k - (20) 

d7:1-0"c 1 Op Oq Oq Op Or2 

Equation (19) is the e~ equation of motion for F. It describes the 
evolution of F under a frozen Hamiltonian h. Motion governed by the 
frozen Hamiltonian is presumed to be ergodic on the surface h =const.  
Thus, Fo must be constant on surfaces of constant h. The solution to 
Eq. (19) subject to Eq. (13) is thus 

Fo(p, q; ~2) = k(r2) 6[h(p, q; ~2) - E(~2)] (21) 
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where, in order to satisfy the initial condition, k(0) and E(0) are specified, 
but k(%) and E(z2) are otherwise undetermined functions of %. In order 
for the expansion F =  F0 + eF~ to be useful, we want to look at times that 
are of the order of 1/~. To do this, F~ is required to be free from secular 
time dependences that cause it to grow rapidly to levels F1 ~ 1/~ at t ,-~ 1/~. 
Adopting this requirement, it can be shown ~ that the order-e 1 evolution 
equation (20) leads to the following equations, giving a unique deter- 
mination of k and E: 

d 
f k('c2) 6[h(p, q; % ) -  E(-c2) ] dUq = (22) dUp 0 

d T  2 �9 

d [. 

U[h(p, q; %) - E(%)] aUp aNq = 0 (23) 
d T  2 �9 

Equation (23) expresses the conservation of the adiabatic invariant 
(/z = const), while Eq. (22) expresses the conservation of the number of par- 
ticles [Eq. (22) can also be written k O#/aE= const]. These two equations, 
along with the initial values for k and E, determine k(*2) and E(T2). 

The F 0 given by Eq. (21) gives no contribution to the right-hand side 
of Eq. (15) [by virtue of the identity x a ( x ) - 0 ] .  Hence, the solution to 
Eq.(19) given by Eq.(21) is insufficient by itself to determine an 
approximation to the dependence of ((AH) 2) on t. To determine 
<(zjH)2), we must look to the e'-order term in F. With Fo specified by 
virtue of Eqs. (21)-(23), we can solve Eq. (20) by the method of charac- 
teristics to get 

f~, 0Fo (p(**), Q(~.); %) dz* (24) 
F I =  - O  0~2 

where the integration is over times r* < ~, and the orbit P(r*) and Q(v*) 
represent solutions of Hamilton's equations in the frozen Hamiltonian 
h(p, q; r2), which at the time ~* = ~, satisfy the "final condition," P ( z , ) = p  
and Q(z , )=q .  After inserting Eqs.(24) and (21) into Eq.(15) and 
reverting back to the t variable, we are able to determine (1') the time 
dependence of <(AH) 2), 

d-t ( ( A H ) 2 ) = 2  C(s, t)ds (25) 

where C(s, t) is the following autocorrelation function: 

dE (26) OH OH 
C(s, t) =- dNp dSq Fo -~ -& Os(t) "~t -'~ 



The Goodness of Ergodic Adiabatic Invariants 537 

In Eq. (26), Os(t ) is an operator that translates values of p and q backward 
in time from an initial moment t by an amount  s by following the trajec- 
tory of the particle in the frozen Hamiltonian H(p, R; et). 

Equation (26) is the autocorrelation function we discussed in Sections 
1 and 2. Its exact value for a particular H will probably be difficult to 
determine either numerically or theoretically. Here, however, we are 
primarily interested in how ( (AH)  2) scales, and this is easy to determine 
from Eqs. (25) and (26). First we consider the case where C(s, t) is 
integrable, 

fo'~ C(s, t) ds < oo 

In this case, for large t ~> r,. [-where r,. is the characteristic correlation time 
in which C(s, t) decreases appreciable with s] we have 

C(s, t) ds ~- C(s, t) ds 

Putting this into Eq. (25), we have, for long times t ~ T, 

( (,Jg)~)~ r fo C(s, t) ds 

Due to the time derivatives in the definition of C(s, t), Eq. (26), the integral 
can be estimated as being of order H2vc/T 2. Thus, in terms of the scaling 
with T we have the result 

( (AH)2)  1/2 ~ (l/T)1/2 (27) 

at t ~  T. This is the result used for comparison with the numerical 
experiments, Example 1 of Section2. Equation (27) can be simply 
understood as follows. The spread about the H = E  surface is basically 
diffusive due to the chaotic dynamics and the short-time correlations, 
~ C(s, t) ds < oo. Thus, we expect the error to scale as (DT) 1/2, where D--- 
~ C(s, t) ds is the diffusion coefficient. However, D itself is caused by the 
time variation of the system and scales as T 2. Thus, Eq. (27) follows. 

Now we consider the case where ~ C(s, t)ds= oo. Assume that for 
large s (i.e., sufficiently greater than some value, which we denote re), 
s >> re, C(s, t) has a power law dependence on s, 

C(s, t )~  ~--~ s -~, ~ <~ l 

822/49/3-4-9 



538 Brown, Ott, and Grebogi 

We now consider what effect the value of ~ has on the time dependence of 
the error in #. For  ~ = 1 and large t, Eq. (25) yields 

2H 2 t 
s ((AH) 2) ~-~-y- l n - -  
dt r~ 

If we integrate this equation and let t ~ T >  re, we get 

( (AH)2),/2 ~ [(In T)/T]'/2 (28) 

This scaling was shown in Section 2 to agree well with the numerical 
experiment denoted Example 2. For  0 < ~ < 1, Eq. (25) yields 

( ( A H)2 ) ,/2 ~ (1/ T)r (29) 

in the adiabatic limit. While our Example 3 of Section 2 appears to yield a 
roughly power law dependence on T as in Eq. (29), this theory does not 
strictly apply, since hypothesis (a) of Section 1 is not satisfied. 

We now turn to the determination of (AH). We multiply Eq. (14) by 
H -  E and integrate over all phase space. After an integration by parts, we 
obtain 

dt (AH) = F dUp dNq (30) - 

where (AH)-~F(H--E)dUpdNq. If we insert Eqs. (17), (21), and (24) 
into Eq. (30), we have 

d ( A H ) = f  Fo(OH dE) dt -87 -dt dup dNq 

( dE) OF* 
- dt* f dNp dNq -~7 Z Ot f 

, OH (31) 

where OF,/Ot denotes OFo/& with its (p, q) arguments replaced by (P(t*), 
Q(t*))  as defined by Eq. (24). From Eq. (23) we see that the first integral 
on the right-hand side of Eq. (31) is zero. Using Eqs. (23) and (26), we find 
that Eq. (31) becomes 

d 0fo -~ (AH) =-~ C(s, t) ds (32) 

where the derivative 8/OE is taken to act only on the E that appears in 
Fo = k6[H-E] in Eq. (26). Following the same arguments as we applied 
to Eq. (25), we find that at t ~ T the quantity (AH) has the same scaling 
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with Tas  does ((dH)2).  Namely, for S~ C(s, t) ds< ~ ,  ( A H )  ..~ T - i ;  for 
C(s,t).,~l/s, (AH) , ,~T-11nT;  and for C(s,t)..~(1/s) ~, 0 < r  
( A H )  ~ T -r If we compare the deviations from the predicted energy 
surface due to ((AH) 2) and (AH) ,  we see that the former is always 
bigger, ( ( A H ) 2 ) U 2 / ( A H )  >). 1, for large T, 

( ( A H ) 2 )  1/2 

( ztH) 

i T1/2 
( T -  1 In  T) - 1/2 

Tr 
for the three cases, respectively. 

Returning now to the adiabatic invariant #, Eqs. (11) and (12) imply 
the scalings 

T 1 

T-11n T 

T-r 

(33) 

for the three cases. In deriving Eqs. (11) and (12), we neglected terms in 
Eqs. (9) and (10) of order (AH) 3 and higher. This is justified if these terms 
are higher order in e than the leading order terms shown in Eq. (33). This 
will be the case if, when we calculate ((AH) ~) (n >~ 3) using F = F o +  eFt, 
we obtain ((AH) ~) = 0. This would mean that, to obtain a nonzero result 
for ((AH) ~) (n >~ 3), we need to calculate F to order e 2 at least. The result 
will be a contribution that is smaller than our leading order term by a 
factor O(e). We now verify that ((AH) ~) ( n > 3 )  satisfies the necessary 
condition. 

We multiply Eq. (14) by ( H - E )  n and integrate over all phase space 
to get 

_ dE 
d ( ( A H ) " ) =  F ( H - E )  "-1 .-ff-~ --~ dNpdNq (34) 
dt 

where ((AH)n)--SF(H--E)~d~VpdNq. If we insert Eqs. (17), (21), and 
(24) into Eq. (34), we have 

( ) _dt ( (dH)n)= Fo(H_E)n_ 1 ~H_~ dE._~ dN p dN q 

I(~H dE)~F* 
-- j'dtjdNpdNq(H--E)"-( f -& -dr +o(~ 3) (35) 
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where 8F*/St is defined below Eq. (31). From Eq. (21) we see that the 
integrands in Eq. (35) contain terms of the form ( H - E ) 6 [ H - E l ,  which 
is identically zero. Thus, the solution to Eq. (34) subject to the initial 
condition (13) yields ( (AH)") <<. O(e2). 

3.2. Analysis for  Bil l iards 

A particle incident on a moving wall with velocity v is reflected from 
the walt with velocity v+. The reflection law relating v+ and v is v+ = 
v T ___ 2 [ w - ( f i . v  T)fi], where we recall that w is the local wall velocity at 
the collision point and is normal to the wall, and fi is the unit normal 
outward from the accessible billiard domain. The Liouville equation for 
billiards is simply Eq. (14) with H =  my2~2: 

OF OF 
Ot + V '~x  --- 0 (36) 

This equation applies inside the billiard. At the walls, F satisfies a boun- 
dary condition obtained from the reflection law, 

F(x, v; t) = F(x, v + 2[w - (fi" v)fi]; t) (37) 

Our treatment of Eqs. (36) and (37) will follow steps analogous to 
those we followed in the treatment of the smooth Hamiltonian, Section 3.1. 
Again we use a two-time-scale expansion. Let 

w = ~ u ( r 2 ) ,  u = u ~  

F =  Fo(x, v; z2) + eFl(X, v; zl,  z2) 

"gl = /, "C2 = 8 /  

The order-t ~ terms in the expansion of Eqs. (36) and (37) yield 

OFo 
v'-~-x =0 

inside the billiard, and 

Fo(x, v; %) = Fo(x, v - 2(fi" v)fi; z2) 

on the boundary. Due to the assumed ergodic behavior, the solution of 
these equations for Fo is an arbitrary function of my2/2. As in Section 3.1, 
we take as our initial condition F = Fo = a 6-function on the energy surface. 
It then follows that 

Fo = k ( z 2 )  b [ m y 2 / 2  - g ( " c 2 ) ]  ( 3 8 )  
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where the slow time functions E ( z 2 )  and k ( z 2 )  a r e  so far arbitrary, except 
that their initial values k(0) and E(0) are specified. 

To find E(%) and k(z2), we proceed to the order-g expansion of 
Eqs. (36) and (37): 

0FI •F1 0F0 
- - +  v - ( 3 9 )  

14o) F I ( X  , V; gl, g2) --Fl(X , v - -  2(fi" v)fi; r l ,  r2) = (2fi" u) \ avn/ 

where vn = v. ft. Multiplying Eq. (39) by g(mv2/2), an arbitrary function of 
my2/2, and integrating over the billiard domain, we obtain 

c3 OFo d2v = 0 - ~ ff~ G g dA d2v= ffA-~x'(VgF1)dA d2v + ffa g Or2 dA 

where we have specialized to the two-dimensional case, N =  2, and the 
integral J'A "'" dA is over the accessible billiard area (dA is an area element 
of the billiard domain). We wish to choose the free functions k(%) and 
E(%) so that the expansion F~-Fo+eF1 remains valid for long times, 
r2 ~ O(1) [i.e., r~ = t ~ O(1/e)]. To accomplish this, we must ensure that F1 
is free of a secular time dependence on r l that would cause F1 to become 
O(1/e) when zl becomes O(1/e). Hence we must have 

f f  F 1 g dA d2v ~ 0 
&l  aaA 

for any g. Thus, we require that 

dA d2v = 0 (41) 

Making use of the boundary condition (40) and the divergence theorem, 
we can show that Eqs. (41) and (38) yield 

where the integral ~. . .  dl is over the billiard walls. Since g is an arbitrary 
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function, the coefficients of g(E) and dg(E)/dE in Eq. (42) must separately 
be zero. Thus, we obtain the condition 

jj~ Fo dA d2v = 0 
~'2 

(which corresponds to particle conservation), and the condition 

dE II +~fi  f mv2Fodld2v=O J J A FO dA dZv " u 
dT2 

Making use of the first condition, we can adopt the normalization 

fAFo dA d2v - 1 (43) 

Making use of Eqs. (38) and (43) and noting that ~ fi.u dl=dA/dz2, the 
second condition becomes dE/d~ 2 + (E/A) dA/d% =0, or 

d (EA) = 0 (44) 

which is the statement of the adiabatic invariant. Equations (43) and (44) 
ensure the absence of secular behavior and determine the slow time 
functions k(%) and E(%). 

We now examine the quantities 

d ((AH)2 d IrA --E FdA dZv (45) 
7 ) 

d (AH) dffA(~----E) FdAd2v (46) g-7 

In Appendix C we manipulate Eqs. (45) and (46) to show that, to lowest 
significant order in e, we can express the time derivatives of ((AH) 2) and 
(AH) as 

d dEffA(m_~_E) F, dAd2 v 7 - -2-27 

-4e2~f (-m-~--E)(~--~-)(u.fi)F, d2vdl (47) 

E 
( 3 H )  _ ~2 ~f (mv])(u. fi) r l  d2v dl (48) dt 

It remains to determine F 1 for insertion into Eqs. (47) and (48). 
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Unlike the problem for F~ in Section 3.1, we have an inhomogeneous 
surface term [the right-hand side of Eq. (40)1, as welt as the previously 
occurring inhomogeneous volume term [-the right-hand side of Eq. (39)1. 
To solve this problem, we consider the Green's function 
G(x, x'; v, v'; qs 1 - -  "Ct l ) ,  which is the solution of 

c3G 0G 
0.g--"-~ -~ V " ~X = t~(X -- ]K') (~(V -- V') 6(T 1 -- ~'1 ) (49) 

G(x,x';v,v';rl--Z'l)=G(x,x';v--2(fi'v)fi, v';rl--z'l) (50) 

where the second condition applies if x is on the billiard boundary and 
G - 0 for ~1 < z]. The right-hand side of Eq. (49) represents the creation of 
a particle at the instant z~ = v'~ at the point x = x' with velocity v = v'. Thus, 
setting s = z~ - ~'~, we have 

G=6[x-X(x' ,  v'ls)] 6Iv-V(x', v'ls)] U[s] (51) 

where X(x', v'ls) and V(x', v ' ls) are particle orbits (with the billiard shape 
frozen at t = r2/e), which satisfy the initial conditions (i.e., s = 0), 

X(x', v'l 0) = x', V(x', v'10) =v '  (52) 

By time reversal G can also be expressed in the alternate form 

G= 6[x'-X(x, v l - s ) ]  6Fv'-V(x, v l - s ) ]  U[s] (53) 

By conservation of energy in the frozen billiard, 

lmV2(x ' , v'ls) =15mv ,2 (54) 

In terms of G, the solution to Eqs. (39) and (40) is 

Fl=--fo \Ozz/Gdx'dv ' - f~f i 'u( l ' ) \Ov,  j 

where F6 - Fo(x', v'; ~z) and the integral ~ is defined so that it is done just 
inside the billiard boundary by an infinitesimal amount (we need to make 
such a definition because V changes discontinuously on reflection and so is 
not defined on the walls). Consider the volume integral in Eq. (55); by 
Eq. (53) we may replace v' in F~ by V(x, v l - s ) ;  and, since F~ depends on 
v' only through lmv'2--*lmV2(x, v l - s ) = � 8 9  2 [by Eq.(54)],  we  can 
remove the prime from F6. This allows us to take 8Fo/SZ 2 outside the 
integrals over x' and v'. Thus, the first integral in Eq. (55) becomes just 
8FoiSt2, where we have noted that ~A G dx' d r ' =  U[s] from Eq. (53). We 



544 Brown, Ott, and Grebogi 

now make use of Eqs. (38), (43), and (44) and the identity 6(x)= -x6'(x)  
to write 

OFo/OZ 2 = _mvZ/2(A - 1 OA/Oz2) OFo/OE 

Also, we note that ~Fo/OV, = -my ,  ~Fo/OE. Equation (55) thus becomes 

ds ~F~ Fmv2 1 ~A ] Fl=fo "-~" L y  A -~-~2+f~fi'u(l')mv',ZGdl'dv' (56) 

Substituting Eq. (56) into Eq. (47) and making use of Eq. (38) and 
OA/#v2= ff i 'u( / ' )dl ' ,  we again obtain Eq. (25), but with the correlation 
function now given by 

C(s, t)=fxff f  F 0 [ (mv2)(mv'2)G - E 2 6(v~v ' ! ]  

x [-w(l) �9 hi [-w(/') �9 fi] d2v d2v ' dl dl' (57) 

Similar steps yield Eq. (32) for d(dH)/dt .  Thus, proceeding as in 
Section 3.1, we conclude that the scalings with T derived for smooth 
Hamiltonians [Eqs. (27)-(29)] also apply for billiards. 

4. CONCLUSIONS 

In conclusion, we can summarize our main results as follows: 

1. For slowly time-dependent systems whose orbits in their frozen 
Hamiltonian ergodically fill the energy surface, the quantity # defined by 
Eq. (1) is an adiabatic invariant. 

2. In terms of the correlation function C(s, t) defined in Eq. (26) or 
Eq. (57), three cases have been treated theoretically, with the following 
results for the scaling with T of ((A#) 2) and ( d p )  evaluated at t ~  T: 

(a) IfS~ C(s, t ) d s < ~ ,  then ((A/z) 2) and (zl/~) scale as T -1. 

(b) If C(s, t) has a long-time 1/s tail, then ((A/~) 2) and (Ap)  scale 
as T l lnT.  

(c) If C(s, t) has a long-time (l/s) r tail with 0 < ~ < 1, then ((A#) 2) 
and (A#)  scale as T -r 

3. The scalings (a) and (b) above have been tested numerically using 
billiards. The results agree well with the theoretical predictions. 

4. Numerical experiments have been done on a system for which 
orbits generated by the frozen Hamiltonian are not completely ergodic on 
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the energy surface, but, except for small island regions, do sample most of 
the energy surface. In this case the ergodic adiabatic invariant is less well 
conserved than in the other examples. In particular, ((A#) 2) scales 
roughly as T -e with ~ substantially less than one. [-Although this is also 
the case for (c) above, the theory does not apply here, since orbits are not 
ergodic on the energy surface.] A brief preliminary version of this work 
appears in Ref. 21. 

A P P E N D I X  A. E N T R O P Y  A N D  Q U A N T U M  C H A O S  

In this Appendix we offer some additional tangential remarks concern- 
ing the ergodic adiabatic invariant. In particular, we discuss its relationship 
to the concept of entropy, and we also discuss its implications for the 
variation of quantum energy level spectra in the quasiclassical limit 
(small h) for systems whose classical behavior is chaotic. 

Entropy. The entropy is commonly written as (Ref. 10, p. 11) 

S = log[-f2(E)] + const 

where ~(E)  is the area of the energy hypersurface, 

Q(E) : f f  6 ( H -  E) dXp dNq 

(A1) 

In terms of the ergodic invariant we can also write f2(E)= 81~/8E. The 
number of states of energy less than E is approximately 

f f  U[E - H] dNp dNq/h N = kt/h N 

where h is Planck's constant. For large N 

log s ~ log # (A2) 

That is, for large dimensionality, the logarithm of the surface and the 
logarithm of the volume are approximately equal (e.g., this is easily seen in 
the case of an N-dimensional sphere of radius r, for which 
surface a r e a ~ r  u 1 and volume~rU).  Thus, the ergodic adiabatic 
invariant is closely related to the concept of entropy when N is large. In 
particular, by Eq. (A2), the constancy of entropy during an adiabatic gas 
transformation implies constancy of log # (in the N ~ oo limit). This shows 
why (as noted in Section 1) setting p = const for a single particle yields a 
condition analogous to the adiabatic gas law (which is a many-particle, i.e., 
large-N, result). 
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Quantum Chaos. The field of study that attempts to explore the 
semiclassical (small-h) behavior of a quantum system whose classical coun- 
terpart is chaotic is called quantum chaos. One of the results in quantum 
chaos is that for classically chaotic systems (without symmetries), as a 
parameter of the system is varied, energy levels of the corresponding quan- 
tum system avoid crossing each other, as illustrated in Fig. 9a. For  
separable systems, such as a rectangular box, this is not the case (e.g., 
Fig. 9b). Say we initialize a quantum system in a state with energy level E, .  
We then have the system evolve forward in time by slowly changing the 
Hamiltonian. Suppose energy level crossings are avoided for this system. 
Then, for very slow time variation, the system will remain in the state that 
is homotopic to its initial state [denote the energy of this state E(t), 
E ( 0 ) = E , ] .  Furthermore, since energy level crossings are avoided, 
N(E(T)), the number of states with energies less than E(t), is constant in 
time. For  example, in Fig. 9c the energy level curves can be labeled in order 
of increasing energy (e.g., E ,_  1 < En < En + 1 < E, + 2 for all values of the 
parameter). Since N- (E) -  #/h N, we can now state the following: 

The quantum version of the ergodic adiabatic invariant of classical 
mechanics is the avoidance of quantum energy level crossings for classically 
chaotic systems. 

Energy (a) (b) Energy 

x 

Energy ( c ) 

' p  

Fig. 9. Energy level versus a system parameter p. (a) Avoided energy level crossing for a 
chaotic system. (b)Energy levels cross in a separable system. (c)Several energy levels and 
avoided crossings in a chaotic system. 
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We thank T. M. Antonsen for discussion leading to the above remark. 
See also discussion by Berry, (19) who previously noted the relevance of the 
ergodic adiabatic invariant for quantum chaos energy level spectra. 

A P P E N D I X  B. C A L C U L A T I O N  OF p 

We consider here the explicit calculation of #, defined by Eq. (1), for 
N=2 .  We write d2p in polar coordinates as dZp= p dp de~. With H =  
p" p/2m + V(q; t), 

# ( E , t ) : f  d2q f ~ d ~  f o  pdp U[E-(p2/2m) - V(q; t)] 

Using the change of variables ;~ = f / 2 m ,  we have p dp = m dz. Performing 
the ;~ and ~b integration yields 

= 2~m ~ ( E -  V) U [ E -  V] d2q (B1) t~( E, t) 
d 

For billiards integrate d2q only over the confining region where V=0, 
since the particle has zero probability of escaping the confining region. 
Thus, 

#(E, t) = 2~mEA 

For Example 3 the potential is 

V = g(t) x 2 + y2 + x2y2 

Performing the x integration, we have that Eq. (B1) becomes 

8~zm S g3/2(fl_~2 y2)3/2 
# ( E , t ) = - - ~ - - ~  ( 1 + ~ - ~  dy (B2) 

where f l2-E/g. Letting y - f l c o s  0, we find for Eq. (B2) 

8r imE 2 ~ sin 4 0 
#(E, t) 3(g + E )  1/2 Jo dO ( l  - k 2 sin 2 0) 1/2 

where k 2 --- E/(g + E). This is an elliptic integral, which, for k < 1, yields, (2~ 

16gm(g + E) 1/2 
# ( E , t ) -  [ ( 3 E + 2 g ) F ( k ) - ( 4 E + 2 g ) K ( k ) ]  (B3) 

9 

where F and K are complete elliptic integrals of the first and second kind, 
respectively. Thus, we have verified Eq. (8). 
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A P P E N D I X  C. D E R I V A T I O N  OF E Q U A T I O N  (47)  

In this Appendix we show how Eq. (47) is obtained from Eq. (45). The 
derivation of Eq. (48) from Eq. (46) is similar and is omitted. Differen- 
tiating the integral in Eq. (45), we have 

d 
- j ~  

+ - E )  dA d2v 

From Eq. (36) 

7 ( ( ~ / _ / ) 2 )  = - 2  dt A 

- _ 

Thus, 

where 

aS ((~H)2)  = at (c1) 

I =  ~i (my2~2 -- E)2 [-fi" (v - w) ]F  d2v dl (C2) 

We now make a change of integration variables in Eq. (C2) from v to v', 
where 

v ' -  v + 2 [ -w-  (fi-v)fi] 

By virtue of the boundary condition (37), we have F(x, v; t) = F(x, v'; t) in 
the integral. I becomes 

I =  - ~t { (mY'2/2 - E)2 - 4m(fi" w)(mv'2/2 - E)[fi" (v' - w)] 

+ 4mZ(fi. W) 2[ - ( V t  __ W )  o f i ] 2 }  [ ' f i .  (V t __ w)]Fd2v dl 
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The contribution to the right-hand side from the first term in the square 
brackets is just - / .  Thus, we have that 

21= 4 f f  re(ft, w)(mv2/2 - E)[fi" ( v -  W)] 2 Fd2v dl+ 4I' 

where 

I' = m 2 ~f (fi" w)2Efi �9 (v - -  W)] 3 Fd2v dl 

Making the change of variables from v to v' in the above expression for I' 
gives I' = - I '  [since ft. (v - w) = - f i "  (v' - w)], or I' = 0. Thus 

I =  2 f f  m(fi. w)(mv2/2 - E)[fi" (v - w)] 2 Fd2v dl 

Since x cS(x)_0, F0 makes no contribution to L Hence, 
significant order, we may replace F by eF1 
follows from Eqs. (Cl)-(C3). 

(C3) 

to lowest 
in Eq. (C3). Equation (47) 
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